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ABSTRACT

Current digital provenance standards such as C2PA rely primarily on cryptographic signatures applied to media
containers post-capture, leaving them vulnerable to "analog hole" attacks where synthetic content is displayed and
re-captured by authenticated devices. We present a proof-of-concept system that correlates multiple physical sensor
modalities—quantum shot noise characteristics, inertial measurement unit (IMU) data, and optical flow—to
establish evidence of authentic physical capture. Our prototype implements three concurrent verification layers:
(1) Poisson noise distribution analysis of raw sensor data, (2) epipolar geometry consistency checking between
device motion and visual parallax, and (3) spectral analysis of hand-tremor characteristics to distinguish human
operators from mechanical stabilization systems. We demonstrate successful integration of these techniques on
commodity Android hardware (Motorola Moto G-Series) and present initial validation results. This work represents
an early-stage exploration of multi-modal physical attestation; extensive adversarial testing, cross-device

validation, and large-scale deployment studies remain as critical future work.
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1. INTRODUCTION

The proliferation of generative Al models capable of
producing photorealistic synthetic media has created
significant  challenges  for  digital evidence
authentication. Traditional forensic techniques based
on compression artifacts and noise patterns are
increasingly  ineffective. ~ While  cryptographic
provenance standards like C2PA provide post-capture
integrity guarantees, they do not address fundamental
vulnerabilities in the capture pipeline itself.

1.1 The Analog Hole Problem

The "analog hole" refers to the vulnerability where
digital content can be displayed on a screen and re-
captured through an authenticated device, thereby
acquiring a legitimate signature despite synthetic
origin. This attack vector bypasses cryptographic
protections by operating at the physical layer.

1.2 Research Questions
This work explores:

1. Can multi-modal sensor fusion detect analog hole
attacks on commodity hardware?

2. What physical properties distinguish authentic
capture from screen recapture?

3. What are the practical engineering challenges in
implementing such a system?

4. What fundamental limitations and attack vectors
remain unaddressed?

We present initial findings from a working prototype
while acknowledging that comprehensive validation
remains future work.

2. RELATED WORK

2.1 Cryptographic Provenance

C2PA and similar standards provide tamper-evident
signatures using trusted execution environments
(TEEs). However, these systems authenticate the
signing device rather than the physical capture event.

2.2 Sensor-Based Authentication

Prior work has explored individual sensor modalities
for authentication. Lukas et al. demonstrated photo-
response non-uniformity (PRNU) for camera
fingerprinting. Amerini et al. used IMU data for video
authentication. Our approach differs by requiring
concurrent multi-modal consistency.

2.3 Deepfake Detection

Traditional deepfake detection focuses on identifying
synthetic artifacts in completed media. Our approach
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instead verifies physical capture characteristics at
acquisition time.

3. SYSTEM DESIGN

3.1 Architecture Overview

Our system implements three concurrent verification
layers:

3.1.1 Layer 1: Quantum Shot Noise Analysis

CMOS image sensors exhibit quantum shot noise
following a Poisson distribution. We analyze raw
Bayer-pattern sensor data before image signal
processor (ISP) intervention to compute the Fano
factor:
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We use © = 0.07 based on our test device
characteristics. Generative models may inject
Gaussian or uniform noise that deviates from Poisson
statistics.

Known Limitations:

e Advanced adversaries could simulate Poisson
noise

e Temperature affects noise characteristics
¢ Threshold is device-specific

3.1.2 Layer 2: Epipolar Geometry Consistency
During a required device tilting gesture (~45 degrees),
we correlate IMU-reported angular displacement with
optical flow analysis. For three-dimensional scenes,
optical flow wvariance should reflect depth
discontinuities:

fiow > 0.12

Screen recaptures exhibit near-planar homography
with lower variance values.

Known Limitations:

¢ Curved displays may defeat this check
¢ Requires user cooperation (gesture)

e Threshold determined empirically from limited
testing

3.1.3 Layer 3: Biomechanical Motion Profiling
Human hand tremor exhibits characteristic spectral
properties in the 8-12 Hz range. We compute
normalized bicoherence to detect quadratic phase
coupling:

bi(f., f2) = |E[X(f)X(F)X*(fi+12)] 1/
(ENXG)XPITENXFi+12)1])

Initial testing suggests human motion produces b? <
0.40, while PID-controlled gimbals exhibit b>> 0.80.

Known Limitations:

e Excludes users with tremor disorders, mobility
aids, or accessibility needs

e Threshold based on limited testing of able-bodied
adults

¢ Sophisticated robots could potentially simulate
chaotic motion

¢ Conflicts with legitimate tripod/mount use cases

3.2 Hardware Integration

Implementation on Android using:

e Camera2 API for RAW sensor access
¢ Direct sensor-to-TEE data path where supported
¢ ARM TrustZone for isolated computation

Engineering challenges encountered:
1. Surface locking conflicts between camera HAL
and Ul

2. Non-standard memory stride requiring custom
parsing

3. Hardware stabilization (OIS/EIS) dampening
biological signals

3.3 Cryptographic Binding

The system generates a hash chain binding sensor
frames and IMU data:

H, = SHA-256(Frame, || IMU, || H,_;)

This chain is signed by the device TEE, binding
hardware identity to the capture sequence.

4. PRELIMINARY VALIDATION

4.1 Test Environment

We implemented the system on a single device:
Motorola Moto G-Series (Model ZT4222V46R).
Testing included:

e Authentic handheld captures in various lighting
conditions
e Screen recapture attacks content

displayed on an 8K monitor)
¢ Gimbal-stabilized captures (DJI Osmo Mobile)

(filming

Critical limitation: These tests represent initial
feasibility validation only. We have not conducted:

¢ Adversarial red team testing

¢ Cross-device validation across manufacturers

e Large-scale statistical sampling

¢ Long-term calibration stability studies

4.2 Observed Results
Shot Noise Analysis:



¢ Authentic captures showed Fano factor F = 1.02
(consistent with Poisson distribution)

e Simple synthetic images with Gaussian noise
showed F = 1.21

e Caveat: We did not test against adversarial noise
models trained on sensor characteristics

Geometric Consistency:

¢ Authentic 3D scenes: 6%, = 0.14
« Flat screen recapture: 6%, =~ 0.008

¢ Clear separation in this limited test set

¢ Caveat: Did not test curved displays, stereoscopic
systems, or light-field displays

Motion Profiling:

¢ Handheld capture: b>~ 0.34
¢ Gimbal capture: b? = 0.82
¢ Separation observed in limited samples

¢ Caveat: Did not test sophisticated chaotic motion
generators or diverse user populations

4.3 What We Did NOT Test

This is critical to state explicitly:

1. No adversarial testing: We did not hire security
researchers to attempt defeats

2. No cross-device validation: Only tested on one
phone model

3.No sample size determination: We have not
established statistical power

4. No calibration drift studies: Unknown how
thresholds change over time

5.No accessibility testing: Unknown impact on
users with disabilities

6. No sophisticated attack simulation: Did not test
learned noise models, curved displays, or
advanced motion synthesis

7. No false positive/negative rate characterization:
Current numbers are anecdotal

5. LIMITATIONS
CHALLENGES

AND OPEN

5.1 Fundamental Vulnerabilities
Layer 1 (Shot Noise):

e Adversaries could train GANs on device-specific
noise characteristics

e Thermal manipulation could potentially spoof
entropy

e Future generative models may include accurate
sensor noise simulation

Layer 2 (Epipolar):

¢ Curved displays likely reduce detection confidence

e Light-field displays could potentially defeat this
entirely

¢ Requires user gesture (UX friction)

Layer 3 (Tremor):

e Excludes legitimate use cases
accessibility devices)

(tripods,

e Sophisticated robotics could simulate biological
chaos

e Raises privacy concerns (biomechanical profiling)

e Potentially discriminatory against users with
movement disorders

5.2 Deployment Barriers

Hardware Fragmentation:

e Requires RAW sensor API (not available on all
Android devices)

e TEE capabilities vary by manufacturer
e Threshold calibration appears device-specific

Calibration Stability:

e Unknown: How do thresholds drift with sensor
aging?

e Unknown: Impact of OS/firmware updates on
sensor characteristics

¢ Unknown: Recalibration frequency required

User Experience:

e Requires deliberate gesture (3+ seconds per
capture)

¢ May fail in low-light conditions
¢ Blocks legitimate professional use cases

5.3 Unsolved Research Questions

1. What is the actual cost to defeat this system?
We claim "economic friction" but have not
modeled actual adversarial costs

2.How does this perform across diverse
hardware? Cross-manufacturer validation needed

3. What are the false positive/negative rates?
Requires large-scale testing

4. How quickly can adversaries adapt? Unknown
timeline for defeat techniques

5. What is the accessibility impact? Requires
diverse user population testing

6. FUTURE WORK

To advance this research beyond proof-of-concept:

6.1 Required Validation Studies

1. Adversarial Red Team: Partner with security
researchers to attempt sophisticated defeats

2. Cross-Device Testing: Validate across 20+
smartphone models from different manufacturers

3. Large-Scale Sampling: Establish statistical
significance with hundreds of samples per
category

4. Longitudinal Calibration Study: 12+ month
deployment tracking threshold drift



5. Accessibility Research: Testing with diverse
populations including users with disabilities

6.2 Technical Extensions
1. Video capture with temporal consistency

2. Privacy-preserving variants using zero-knowledge
proofs

3. Graceful degradation strategies for partial sensor
availability

4. Alternative excluded

populations

verification paths for

6.3 Ecosystem Engagement
1. Standardization discussions with C2PA working
groups
2. Engagement with Android AOSP for forensic API
development

3. Legal admissibility research (Daubert hearings,
expert testimony frameworks)

4. Privacy impact assessment (GDPR compliance for
biometric data)

7. DISCUSSION

7.1 What This Work Demonstrates
We have shown that:

e Multi-modal sensor fusion is implementable on
commodity hardware

¢ Initial separation exists between authentic capture
and simple attacks in our limited testing

¢ Integration challenges are solvable with sufficient
engineering effort

7.2 What This Work Does NOT Demonstrate
We have NOT shown:

¢ Robustness against sophisticated adversaries

¢ Generalization across hardware platforms

¢ Long-term stability or maintainability

¢ Acceptable false positive/negative rates at scale
¢ Compatibility with accessibility requirements

¢ Economic viability of deployment

7.3 Honest Assessment

This represents early-stage exploratory research, not
a production-ready solution. The gap between "works
on one phone in limited testing" and "deployable
security system" is substantial and requires:

e Extensive adversarial

minimum)

testing (6-12 months

e Multi-institution validation studies

¢ Standardization and regulatory review

¢ Accessibility and fairness auditing

¢ Industry coordination for hardware support

The timeline for any real-world deployment would be
measured in years, not months.

7.4 Adversarial Cost Sketch: Practical Barriers
and Attack Economics

This section provides a qualitative, order-of-
magnitude assessment of the economic and
engineering costs required for adversaries to defeat
the proposed multi-modal physical attestation system.
We emphasize that this analysis is not empirical, does
not claim completeness, and is intended solely to
contextualize the "economic friction" argument made
elsewhere in this work.

A. Attacker Classes Considered

We consider three broad adversary classes, reflecting
common threat modeling practice:

1. Opportunistic Adversary: Individuals or small
groups using readily available software tools,
consumer displays, and commodity hardware.
Typical use cases include misinformation,
impersonation, or low-scale fraud.

2. Professional Fraud Operations: Well-resourced
criminal groups capable of custom software
development, hardware  modification, and
coordinated attack workflows. Motivated by
financial gain.

3. Well-Resourced / State-Level Actors:
Adversaries with access to specialized hardware
fabrication, optical systems, and multidisciplinary
engineering teams. Motivated by intelligence,
influence, or strategic objectives.

This work is primarily concerned with the first two
classes.

B. Layer-by-Layer Adversarial Cost Analysis
Layer 1: Quantum Shot Noise Consistency

Baseline Attack: Inject synthetic noise into generated
images to approximate Poisson statistics.

Observed Barrier: While Poisson-distributed noise is
straightforward to simulate in isolation, accurately
matching device-specific sensor behavior (gain, read
noise, temperature dependence, pixel-level
correlations) requires:

e Access to raw sensor characterization data
¢ Per-device noise modeling
¢ Adaptation to thermal and ISO variability

Estimated Cost Impact:

¢ Opportunistic adversary: Low—moderate
(software-only, but brittle)

e Professional fraud group: Moderate (device-
specific model training required)

o State-level actor: Low (well within capability)
This layer alone does not provide strong security, but

establishes a minimum entropy requirement that
naive synthetic generation often fails to meet.

Layer 2: Epipolar Geometry and Motion—Vision
Consistency



Baseline Attack: Display synthetic content on a high-
resolution screen and re-capture during a device
motion gesture.

Observed Barrier: Defeating this layer requires
presenting true depth-dependent parallax
synchronized with real-time IMU-reported motion.
This is difficult to achieve with:

¢ Flat displays (planar homography)

e Pre-rendered content without real-time motion
coupling

Potential defeat strategies include:

¢ Curved or multi-plane displays

¢ Real-time rendered light-field or volumetric
displays

¢ Mechanically synchronized motion rigs

Estimated Cost Impact:

¢ Opportunistic adversary: High (infeasible)

¢ Professional fraud group: High (custom optical
hardware required)

e State-level actor: Moderate

specialized systems)

(possible  with

This layer imposes significant physical and
synchronization complexity, particularly in handheld
form factors.

Layer 3: Biomechanical Motion Profiling

Baseline Attack: Use mechanical stabilization
(gimbal, tripod) to control motion characteristics.

Observed Barrier: PID-controlled stabilization
systems exhibit deterministic phase coupling distinct
from human tremor. To defeat this layer, an adversary
would need to:

¢ Generate motion with appropriate spectral entropy
¢ Avoid deterministic control algorithms
e Synchronize motion with visual and IMU signals

Potential  approaches include chaotic motion

generators or learned motion synthesis systems.
Estimated Cost Impact:

¢ Opportunistic adversary: Very high (infeasible)

¢ Professional fraud group: Moderate—high (custom
robotics required)

e State-level actor: Low—moderate

This layer is effective against commodity
stabilization attacks, but does not claim resistance to
sophisticated robotic simulation.

C. Combined System Cost Effects

Critically, defeating the full system requires
simultaneous success across all three layers, under
real-time constraints, on a per-device basis:

¢ Noise statistics must match sensor physics

¢ Visual parallax must match IMU-reported motion
e Motion characteristics must resemble human
biomechanics

e All signals must be temporally synchronized and
bound cryptographically

This coupling significantly increases adversarial
complexity compared to defeating any single layer in
isolation.

D. Summary Assessment

This system does not provide
unforgeability. However, it appears to:

cryptographic

e Block opportunistic and low-effort analog hole
attacks

e Impose meaningful engineering and hardware
costs on professional fraud operations

¢ Remain vulnerable to well-resourced, specialized
adversaries

We therefore characterize the security benefit as
economic deterrence, not absolute prevention.
Quantifying these costs precisely remains an open
research problem and a priority for future adversarial
testing.

8. CONCLUSION

We have presented a proof-of-concept system for
multi-modal physical attestation of digital media
capture. By correlating quantum shot noise, epipolar
geometry, and biomechanical motion characteristics,
our prototype demonstrates initial feasibility of
detecting analog hole attacks on commodity hardware.

However, we emphasize that this work represents the
beginning of a research program, not its conclusion.
Extensive validation, adversarial testing, cross-
platform development, and accessibility research are
required before any claims of practical security can be
made.

The fundamental challenge remains: as generative Al
capabilities improve and adversaries develop adaptive
attacks, the gap between authentic and synthetic
content continues to narrow. Multi-modal physical
verification may provide temporary advantage in an
ongoing arms race, but it is not a permanent solution.

We release this work to stimulate research discussion
and invite the security community to help identify
vulnerabilities, suggest improvements, and conduct
independent validation.

ACKNOWLEDGMENTS

This work was conducted independently without
institutional funding. We thank the open-source
Android development community for Camera2 API
documentation and acknowledge the need for peer
collaboration to advance this research.



CONFLICT OF INTEREST

REFERENCES

The author has commercial interests in Washington
Tec, LLC, which may seek to commercialize aspects
of this technology.

CODE AND DATA AVAILABILITY

Implementation details are currently proprietary
pending patent review. We commit to releasing:

¢ Sanitized validation datasets upon peer acceptance
e API specifications for independent implementation
¢ Threshold determination methodology

We invite interested researchers to contact us
regarding collaboration opportunities.

NOTE TO REVIEWERS: This manuscript
represents work-in-progress. We specifically seek
feedback on:

1. Additional attack vectors we should test
2. Suggested methodologies for large-scale validation

3. Accessibility  considerations we

overlooked

may have

4. Related work we should cite

5. Statistical methods appropriate for establishing
detection thresholds

[1] Goodfellow, 1., et al. "Generative adversarial networks."
NIPS 2014.

2] Karras, T., et al. "A style-based generator architecture for
y g
generative adversarial networks." CVPR 2019.

[3] Verdoliva, L. "Media forensics and deepfakes: an
overview." IEEE Journal of Selected Topics in Signal
Processing, 2020.

[4] C2PA Specification. "Coalition for Content Provenance
and Authenticity Technical Specification v1.0." 2022.

[5] Piva, A. "An overview on image forensics." ISRN Signal
Processing, 2013.

[6] Marra, F., et al. "Do GANs leave specific traces?" IEEE
WIFS 2019.

[7] Lukas, J., et al. "Digital camera identification from
sensor pattern noise." [EEE TIFS 2006.

[8] Amerini, L., et al. "Smartphone fingerprinting combining
features of on-board sensors." IEEE TIFS 2017.

[9] Tolosana, R., et al. "Deepfakes and beyond: A survey of
face manipulation and fake detection." Information
Fusion, 2020.

[10] Rossler, A., et al. "FaceForensics++: Learning to detect
manipulated facial images." ICCV 2019.

[11] Janesick, J. R. "Photon transfer." SPIE Press, 2007.

[12] Deng, Y., et al. "Learning to generate realistic noisy
images via pixel-level noise-aware adversarial training."
NeurIPS 2021.

[13] Deuschl, G., et al. "Consensus statement of the
Movement Disorder Society on Tremor." Movement
Disorders, 1998.

© 2026 Independent Researcher | Washington Tec, LLC



